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ABSTRACT

Insufficient model resolution is one source of model error in numerical weather predictions. Meth-

ods for parameterizing this error in ensemble data assimilations were explored here. Experi-

ments were conducted with a 2-layer primitive equation model, where the assumed true state

was a T127 forecast simulation. Ensemble data assimilations were performed with the same

model at T31 resolution, assimilating imperfect observations drawn from the T127 forecast. The

magnitude of errors due to model truncation was much larger than the error growth due to initial

condition uncertainty, making this a severe test of the ability of an ensemble-based data assim-

ilation to deal with model error. Two general methods, “covariance inflation” and “additive er-

ror,” were considered for parameterizing the model error at the resolved scales (T31 and larger)

due to interaction with the unresolved scales (T32 to T127). Covariance inflation inflates the

background forecast members’ deviations about the ensemble mean, while additive error adds

specially structured noise to each ensemble member forecast before the update step.

The method of parameterizing this model error has a substantial effect on the accuracy of en-

semble data assimilations. Covariance inflation produced ensembles with analysis errors that

were no lower than the analysis errors from 3-dimensional variational (3D-Var) assimilation,

and for the method to avoid filter divergence, the assimilations had to be periodically reseeded.

Actual model errors depended on the dynamics, growing more in the middle latitudes, while co-

variance inflation uniformly inflated the model spread. This caused a progressive degradation of

the ability of the ensemble to span the actual forecast error. The most accurate model error pa-

rameterization was an additive model error parameterization, which reduced the error difference

between 3D-Var and a near-perfect assimilation system by ∼ 40%. In the lowest-error simula-

tions, additive errors were parameterized using samples of model error from a time series of dif-

ferences between T63 and T31 forecasts. Scaled samples of differences between model forecast

states separated by 24 h were also tested, as well as scaled samples of the model state’s anomaly

from the model climatology. These latter two methods of generating additive error samples pro-
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duced analyses that were progressively less accurate. The decrease in accuracy was likely due to

their inappropriately long spatial correlation length scales.

3



1. INTRODUCTION

Ensemble-based atmospheric data assimilation techniques are actively being explored as

a potential replacement for or complement to 3- or 4-dimensional variational data assimilation

(3D-Var or 4D-Var; Parrish and Derber 1992, Le Dimet and Talagrand 1986, Courtier et al. 1994,

Rabier et al. 1998, 2000). Data assimilation algorithms statistically adjust prior forecasts to newly

available observations to generate reduced error initial conditions suitable for numerical weather

predictions. As such, these methods require error statistics of both the prior forecast (the “back-

ground”) and the observations. Typically, error distributions are also assumed to be normally

distributed, stationary (time invariant), and perhaps homogeneous (spatially invariant in some

sense, such as along a latitude circle). Ensemble-based data assimilation methods relax some of

these assumptions. In particular, the background-error statistics are estimated from an ensemble

of forecasts and can vary in magnitude and spatial structure depending on the flow of the day.

This permits them in theory to provide a more accurate adjustment of forecasts to new observa-

tions, resulting in reduced-error analyses. Ensemble-based techniques typically require an en-

semble of ∼ 20 to a few hundred members of short-range forecasts and as many parallel data

assimilation updates. Hence, these methods are computationally expensive, similar to 4D-Var.

For more background on ensemble-based methods see, for example, Evensen (1994), Evensen

and van Leeuwen (1996), Houtekamer and Mitchell (1998), Burgers et al. (1998), Tippett et al.

(2003), Anderson (2003), Evensen (2003), and Lorenc (2003).

In perfect-model tests, the ensemble filters produced simulations with dramatically lower

errors than were achieved with competing methods (e.g., Hamill and Snyder 2000, 2002, Ander-

son 2001). Only within the last year or two have ensemble-based methods been tested in realis-

tic numerical weather prediction models with real observations. In such a case the perfect-model

assumptions must be dropped, and the forecast uncertainty due to model error must be param-

eterized in some fashion. Houtekamer et al. (2004) propose parameterizing model deficiencies

with “additive error,” adding noise to each member of the ensemble of background forecasts,

in their case selecting noise consistent in structure with a 3D-Var background-error covariance
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model. Their initial results showed that ensemble-based assimilation methods were competitive

with but not superior to 3D-Var. Whitaker et al. (2004, hereafter W04) tested the assimilation

of a sparse network of surface pressure observations for purposes of generating a long-term, his-

torical reanalysis. W04 found that the analysis errors from the ensemble data assimilation were

significantly less than were achieved with a simple 3D-Var. With the sparse observations, the

form of the background-error covariance model had more of an impact on the accuracy of the

assimilations (Hamill and Snyder 2000). In W04, model errors were treated through “covariance

inflation,” inflating the ensemble member’s spread about the ensemble mean. Despite the gen-

erally good results, the data assimilations produced too little analysis spread in data-rich regions

and too much spread in data-sparse regions.

How important is the specific method of parameterizing model errors in ensemble-based

data assimilation applications? This is a question we seek to answer in part in this manuscript.

Model error, of course, can be introduced from many causes, such as imperfect parameteriza-

tions (Buizza et al. 1999, Palmer 2001). We choose to examine only one particular aspect of

model error, the errors introduced by the truncation of the forecast model and the resulting lack

of interaction with the smaller scales of motion. In these simulations the lack of interaction re-

sults in a deficiency of spread but does not systematically bias the ensemble very much. We then

consider whether any of several types of additive noise can be as good or better a parameteriza-

tion of this model error than covariance inflation. Our simulation experiment will assume that

the true state is a global simulation at triangular truncation T127, while the assimilation will be

carried out at T31 resolution, assimilating imperfect observations sampled from the T127 nature

run. We will test whether differences between T63 and T31 forecasts are an effective additive

model error parameterization, and we also test the effects of scaled differences between forecast

model states separated by 24 h and scaled differences of random model states from the climato-

logical mean state.

Because of its computational speed and general resemblance to operational numerical weather

prediction (NWP) models, we will use a simple, global 2-layer primitive equation (PE) model
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for these ensemble data assimilation experiments. We begin with an examination of the charac-

teristics of the model itself and of short-term forecast errors due to truncation (section 2). Sec-

tion 3 provides a description of the ensemble-based data assimilation methodology and various

candidate techniques for paramerizing model error. Section 4 describes the experiment, section

5 examines the relative accuracy of the assimilations using various model-error parameteriza-

tions and discusses these results, and section 6 concludes.

2. FORECAST MODEL

a. Model design

Results in the rest of the paper will be based on experiments with a dry, global, two-layer

PE model. The forecast model was described in Zou et al. (1993, their appendix A) and was

used in Hamill et al. (2001) for ensemble data assimilation experiments in a perfect-model con-

text. The model is spectral and was run at three triangular truncations, T127, T63, and T31. The

model state vector consists of vorticity and divergence spectral coefficients at two levels as well

as coefficients of layer thickness ∆π, where π is the Exner function. There is a simple, zonal

wavenumber 2 terrain with a maximum amplitude of 2000 m at 45o N and S latitude and 45o E

longitude and 135o W longitude, tapering to 0 m at the poles and equator. The model is forced

by Newtonian relaxation to a prescribed interface Exner function with a damping timescale τdiab =

20 days. A fourth-order Runge-Kutta scheme is used for the numerical integration. The timesteps

are 5, 10, and 20 minutes for the T127, T63, and T31 resolutions. There is ∇8 = (∇2)4 hyper-

diffusion with a 6-hour e-folding timescale for the shortest resolvable scale. The diffusion act-

ing on a given wavenumber will therefore increase as the truncation is made more severe. Other

parameters are the same as in Zou et al. (1993), with the exception that the upper-layer poten-

tial temperature is specified to be θ2=310K, θ1=280K, the model top ztop = 1.5 × 104 m, and

the lower layer drag coefficient τdrag = 4 days. The Exner function at the model top πtop =

cp − gztop

θ1
is fixed and set to a value of ∼ 478.5Jkg−1K−1. The surface Exner function is diag-

nosed from πtop + ∆π2 + ∆π1.
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In the experiments that follow, the model is initialized from a state of rest plus a barotropic

vorticity perturbation and allowed to spin up for 100 days before beginning the forecast and as-

similation experiments.

b. Model and truncation error characteristics

Error doubling times, as computed from the leading Lyapunov vectors (Legras and Vau-

tard 1996), are faster when the model is run at higher resolution. The error doubling times is

3.78 days at T31, 2.16 days at T63, and 1.88 days at T127. As in Snyder and Hamill (2003), the

leading Lyapunov vectors are closely related to the jet-stream dynamics (not shown).

For all resolutions, the model exhibits westerly jets in the middle latitudes and an easterly

jet in the tropics (Fig. 1a). The tropical easterly jet is less pronounced at T127 resolution while

the mid-latitude westerly jet is more pronounced. The mid-latitudinal gradient of the upper-layer

thickness ∆π (Fig. 1c) is slightly larger in magnitude in the T127 simulation, consistent with the

stronger mid-latitude jet.

Figure 2 shows the kinetic-energy power spectra from nature runs at T127, T63, and T31

resolutions as a function of total wavenumber k. The spectral slope at subsynoptic scales is shal-

lower than k−3 expected with 2-dimensional turbulence but steeper than k−5/3 of 3-D turbu-

lence. At wavenumbers around 30, the power in the T31 nature run is damped relative to the

two higher resolution simulations, a consequence of the ∇8 hyperdiffusion which selectively

damps the shortest retained scales.

For subsequent experiments, let us assume that our forecast system is only able to resolve

scales T31 and larger, hereafter called the “resolved scales.” The errors in the resolved scales

due to interaction with the scales of motion smaller than T31, the “unresolved scales,” is what

constitutes the model error. We will assume that the “real” atmosphere evolves according to the

forecast dynamics described by the same model, but at T127 resolution. Short-term model error

is diagnosed as follows: first, let x127(t) denote the true model state at time t at full T127 reso-

lution. Let M127( · ) denote the forecast model operator at T127 resolution taking the state for-

ward one time unit: x127(t + 1) = M127(x127(t)). Let T [ · ] denote the truncation operation of
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the model state to the resolved scales. Then short-term model error is thus M31(T [x127(t)]) −

T [x127(t + 1)]. That is, model error consists of the difference of a low-resolution forecast from

a truncated initial condition minus the truncated forecast from a high-resolution model using

a high-resolution initial condition. This describes the short-term forecast error in the resolved

scales due to the lack of modeling of interaction with the unresolved scales.

Figure 3 shows a time series of model errors accumulated independently each 24 h over 5

consecutive time periods. At the beginning of each 24-h period, the T31 simulation was reini-

tialized with the truncated T127 nature run’s state, and model error was accumulated over the

next 24-h period. The model error appears to have some temporally correlated features associ-

ated with certain short waves. There was also a substantial amount of error that appeared to be

more random. Perturbations were generally larger in the regions of large gradients of ∆π, typi-

cally in the midlatitudes.

Model errors were initially small in scale but grow upscale (Fig. 4), peaking eventually at

the synoptic scales. After an initial transient period, these results take on many of the character-

istics of the predominantly baroclinic growth witnessed in Tribbia and Baumhefner (2004) rather

than the classic upscale growth associated with a k−3 spectrum discussed in Lorenz (1969) and

Leith and Kraichnan (1972). However, the errors here do not accumulate as quickly at the plane-

tary scales as in the Tribbia and Baumhefner study.

Figure 4 also shows model error spectra when the model was truncated at T63 resolution in-

stead of T31. The overall T63 24-h model error spectrum was approximately an order of magni-

tude smaller, since far more of the power of the overall spectrum was resolved. The peak power

was at a slightly shorter wavenumber, and the errors grew faster, so the T63 model errors were a

greater fraction of the T31 model error at 120 h than at 3h. Errors at the smallest scales of the

T63 simulation appear to be supersaturated at 3h (a variance higher than climatological vari-

ance) but were subsequently damped by the diffusion. Overall, the amplitude of model error due

to truncation is decreased as resolution is increased and as the time between assimilation cycles

is decreased.
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3. ENSEMBLE DATA ASSIMILATION METHODOLOGY

The general ensemble-based assimilation methodology proceeds as follows: First, assume

that a set of n perturbed initial conditions is available that presumably samples from the distri-

bution of background (first guess) errors. Perform n + 1 parallel data assimilation cycles using

an ensemble-based assimilation algorithm, updating the ensemble mean and perturbations from

the mean to the newly available observations, modeling the background-error covariances using

the ensemble. Next, make n forecasts forward to the next data assimilation time. This step may

include adjusting these forecast ensemble members in some manner to account for model errors.

Repeat the update and forecast steps. Below, we consider the details of the update and forecast

steps.

a. Updating with the ensemble square-root filter

The assimilation scheme used here has been named the ensemble square-root filter, or “En-

SRF.” A complete description of it and the rationale for its use is provided in Whitaker and Hamill

(2002). The underlying principle is to run an ensemble of parallel forecast and data assimilation

cycles, ensuring that the ensemble mean analysis and the analysis-error covariance as estimated

by the ensemble are consistent with those predicted by Kalman-filter theory.

Let yo(t) be a set of observations at time t and H be a linear operator that converts the model

state to the observation space. Let Xb(t) = [ xb
1(t), . . . , xb

n(t) ] be a matrix whose column vectors

are the n ensemble of forecasts, and similarly, let Xb(t) = [ xb(t), . . . , xb(t) ] denote an matrix

where each column vector is the ensemble mean forecast: xb(t) = 1
n

∑n
i=1 xb

i (t). Let Pb(t) be the

background-error covariance matrix approximated using the sample covariance from an ensem-

ble of model forecasts; Pb(t) = 1
n−1 [ Xb(t)−Xb(t) ] [ Xb(t)−Xb(t) ]T. Let R be the observation-

error covariance matrix.

Following Whitaker and Hamill (2002), it is convenient in the EnSRF to update the equa-

tions for the ensemble mean (denoted by an overbar) and each member’s deviation from the
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mean (prime) separately:

xa(t) = xb(t) + K[ yo(t) − Hxb(t) ], (1)

x′a
i(t) = (I − K̃H) x′b

i (t). (2)

Here, the superscript a denotes the analysis, K is the traditional Kalman gain,

K = Pb(t)HT [HPb(t)HT + R]−1. (3)

and K̃ is a the “reduced” gain used to update deviations from the ensemble mean. When sequen-

tially processing independent observations, K, K̃, HPb(t) and Pb(t)HT are all vectors with the

same number of elements as the model state vector, and HPb(t)HT and R are scalars. Thus, as

first noted by Potter (1964),

K̃ =

(
1 +

√
R

HPb(t)HT + R

)−1

K. (4)

The quantity multiplying K in Eq. (4) is a scalar between 0 and 1. This means that, in order to

obtain the analysis-error covariance consistent with the Kalman filter, one updates deviations

from the ensemble mean using a modified Kalman gain that is reduced in magnitude relative to

the traditional Kalman gain. Deviations from the mean are thus reduced less in the analysis us-

ing K̃ than they would be using K. In the canonical ensemble Kalman filter (EnKF; Burgers et

al. 1998), the excess variance reduction caused by using K to update deviations from the mean

is compensated for by the introduction of noise to the observations. In the EnSRF, the mean and

departures from the mean are updated independently according to Eqs. (1) and (2). If observa-

tions are processed one at a time, the EnSRF requires about the same computation as the tradi-

tional EnKF with perturbed observations. The relative characteristics of the stochastic EnKF up-

date algorithm and the deterministic EnSRF algorithm are discussed from different viewpoints in

Whitaker and Hamill (2002) and Lawson and Hansen (2004).

Experience has shown that if the model state has more degrees of freedom than the ensem-

ble has members, the background-error covariances cannot be directly estimated from a rela-

tively small ensemble without producing a poor quality ensemble subject to the problem of filter

divergence (Maybeck 1979 p. 338)
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Hence, the background-error covariance model used in the data assimilation is typically

modified by a process called “covariance localization” (e.g., Houtekamer and Mitchell 2001,

Hamill et al. 2001). Mathematically, to apply covariance localization, the Kalman gain in (3)

is replaced by a modified gain

K =
(
ρS ◦ Pb(t)

)
HT

(
H [ρS ◦ Pb(t)] HT + R

)−1
, (5)

where the operation ρS ◦ in (5) denotes a Schur product (an element-by-element multiplication)

of a correlation matrix S with local support with the covariance model generated by the ensem-

ble. The Schur product of matrices A and B is a matrix C of the same dimension, where cij =

aij bij . For horizontal localization, one such correlation matrix can be constructed using an ap-

proximately Gaussian-shaped function described in Gaspari and Cohn (1999). When covariance

localization is applied to smaller ensembles, it can actually result in more accurate analyses than

would be obtained from larger ensembles without localization (Houtekamer and Mitchell 2001).

Covariance localization, however, can introduce balance and consequent error-growth problems

when the localization function is too narrow (Mitchell et al. 2002, Lorenc 2003).

b. Generating background forecasts

The other necessary part of the data assimilation cycle is the propagation of the forecast

ensemble forward in time with the full, nonlinear forecast model to the time of the next new

observations. This ensemble is used to estimate the mean state and background-error covari-

ances. Unfortunately, the forecast model is not perfect, so even if one of the ensemble mem-

bers happened to have a perfect initial condition, its subsequent forecast would contain errors. In

Kalman filters (e.g., Gelb 1974, Maybeck 1979) the background-error covariances are specified

by propagating the analysis-error covariances forward using the linear tangent M and its adjoint

of the fully nonlinear forecast model operator M, with an addition of covariance Q to account

for model error:

Pb(t + 1) = MPa(t)MT + Q. (6)
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Q is assumed to Gaussian, comprised of errors η ∼ (0, Q) that are uncorrelated in time and un-

correlated with internal error.

The EnKF and EnSRF achieve similar covariances to the Kalman filter, using the ensemble

of fully nonlinear forecasts to estimate the background-error covariances. Let Xa(t) = [xa
1(t), . . . , xa

n(t)]

be an ensemble of analyses at time t. Let M denote the foreward model operator between time

t and t + 1, and let MXa(t) denote an array composed of column vectors of ensemble mean fore-

casts started from time t, i.e., MXa(t) = [Mxa(t), . . . ,Mxa(t)], where Mxa(t)) = 1
n

∑n
i=1 Mxa

i(t) =

1
n

∑n
i=1 xb

i (t + 1). Then if forecast errors evolve linearly and the size n of the ensemble increases,

[MXa(t) −MXa(t)] [MXa(t) −MXa(t)]T = [Xb(t + 1) − Xb(t + 1)] [Xb(t + 1) − Xb(t + 1)]T →

MPa(t)MT. This indicates that the ensemble can be propagated forward and used to estimate

the background-error covariances, minus the missing Q term in (6). If the forward propagator

introduces systematic errors, the background forecasts should be adjusted; see Dee and Todling

(2000). In this experiment, the systematic error was negligible. The subsequent experiments will

demonstrate the impact of parameterizing Q through two general techniques, covariance infla-

tion and/or additive errors.

With covariance inflation, ensemble members’ deviations about their mean are inflated by

an amount r, slightly greater than 1.0, before the first observation is assimilated:

xb
i (t + 1) ← r

(
xb

i (t + 1) − xb(t + 1)
)

+ xb(t + 1). (7)

Here, the operation ← denotes a replacement of the previous value of xb
i (t + 1). Application of

a moderate inflation factor has been found to improve the accuracy of assimilations in perfect-

model experiments (Hamill et al. 2001, Whitaker and Hamill 2002) and real-data simulations

(W04). Note that inflation increases the spread of the ensemble, but it does not change the sub-

space spanned by the ensemble. The common assumption in the Kalman filter derivation is that

model error and internal error growth are uncorrelated. If indeed the model error projects into

a substantially different subspace than the ensemble, this parameterization may not be effective.

However, if the dynamically relevant part of model error is part that projects onto the growing
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modes spanned by the ensemble, covariance inflation may be effective. Another issue with co-

variance inflation is that a single inflation factor r may not be optimal over all parts of a model

domain. Consider, for example, a situation where observations are very plentiful in one hemi-

sphere and nearly nonexistant in the other. In the data-sparse hemisphere, observations will not

reduce the spread of the ensemble as much during the updates, and covariance inflation may lead

to an unbounded growth of ensemble variance.

Additive errors may avoid some of these problems. Noise ηi with the same dimension as

the model state is added to each ensemble member background forecast before the update cycle

starts:

xb
i (t + 1) ← xb

i (t + 1) + ηi. (8)

ηi ought to sample the probability distribution of accumulated model errors Q, i.e., 〈ηiη
T
i 〉 = Q.

Also, 〈 x′b
i (t + 1) ηT

i 〉 = 0; that is, the model error ought to be independent of the internal error,

though the model error might still be dependent on the model state. Unlike covariance inflation,

the resulting modified ensemble may well span a somewhat different subspace than the unmod-

ified ensemble, and additive error will not have the tendency to excessively inflate the forecast

variance when no observations are present, for the additive errors have a proportionally larger

influence where background-error variances are small compared to where they are large.

In the subsequent section we describe tests of ensemble assimilations with additive errors

generated using three different methods. The first approach was to sample differences between

the resolved scales of model forecasts at different resolutions. Recall that in our experiment,

the true model state was from a T127 simulation and the ensemble forecasts conducted at T31.

Suppose generating a T127 simulation is a computational impossibility, but we have the ability

to generate a long T63 simulation. The difference of the resolved scales between T63 and T31

forecasts can then be computed: M31(T [x63(t)]) − T [x63(t + 1)]. This time series can be ran-

domly sampled, and a different sample ηi can be added to the each ensemble member according

to (8). In fact, what typically was added was s ηi, where s represented a scaling factor greater
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than 1.0. That is, the additive error samples were inflated in size somewhat before being added

to the background forecasts.

Another ad-hoc approach that was tested was to add scaled-down differences between ran-

dom model states from the forecast model climatology, i.e., ηi = s [x31(tr) − x31], where tr is a

random time from the time series of the T31 nature run, x31 is the mean climatological state, and

again s is a scaling factor. A similar approach was used for generating ensemble perturbations

by Schubert and Suarez (1989). A third additive error approach used scaled-down short-term

(24-h) forecast tendencies: ηi = s [x31(tr) − x31(tr − 24h)], where again tr is a random time

from the time series.

Figure 5 shows the spatially lagged correlations of additive errors generated through these

three processes, as well as the lagged correlation of the true model errors, i.e., M31(T [x127(t)])−

T [x127(t + 1)]. The differences between model forecasts at T63 and T31 resolutions produced

additive errors with the shortest correlation length scales, very similar to the correlation length

scale of the actual model error. The length scales from 24-h forecast tendencies were substan-

tially longer, and samples from climatology had the longest length scales. By generating ad-

ditive error using these three methods, we can examine whether overestimating the correlation

length scale of additive errors will reduce the accuracy of the subsequent analyses. Figure 5 also

shows the correlation structure of typical background forecasts from one of the subsequent en-

semble data assimilation experiments (experiment 5, described in Section 4b). Additive errors

from differences between T63 and T31 forecasts shortened the correlation length scale of the

background errors, while climatological additive noise lengthened it.

4. EXPERIMENT DESIGN

a. Observations, ensemble configuration, and evaluation technique

We now describe a large number of data assimilation experiments. In each experiment, ob-

servations of ∆π2 were taken at a set of nearly equally spaced locations on a spherical geodesic

grid (Fig. 6). The observations consisted of the T127 true state plus errors drawn from a dis-
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tribution with zero mean and standard deviation of 8.75 Jkg−1K−1. Observation errors were

independent at each location and time, and observations were assimilated every 24 h.

In all the experiments, the ensemble size was 208 members. The ensemble was initialized

with random draws from the climatology of the assimilating model. The data assimilation pro-

ceeded over a 150-day period; the first 50 days were discarded as a spinup period, and error

statistics were accumulated over the remaining 100 days. Aside from experiment 1, a perfect-

model simulation at T127, all the other experiments were conducted at T31 resolution.

After some preliminary experimentation, the chosen covariance localization for all exper-

iments used the Gaspari and Cohn (1999) horizontal localization function that decayed to zero

at 5000 km. This length scale was chosen after trying several cutoff distances in perfect-model

experiments with the T127 model (experiment 1 below).

The ensemble-mean analysis error and spread (standard deviation of the ensemble about its

mean) were measured in three norms, a globally averaged, mass-weighted kinetic energy norm,

an upper-layer thickness norm (since the model top is fixed, this is equivalent to a measurement

of interface Exner function), and surface Exner function norm. The kinetic energy norm at a

given time is

‖ · ‖ke =

[∫
S

∫
L

π
(
u′2 + v′2) dSdL∫

S

∫
L

π dSdL

]0.5

(9)

Here, u′ and v′ denote the model wind components’ ensemble-mean error or spread, π again

refers to the model state’s Exner function, S refers to the integration over the sphere, and L in-

tegration over the model layers. The interface height norm is

‖ · ‖∆π2
=

1
A

[ ∫
S

∆π′
2

2
dS

]0.5

(10)

where ∆π2
′ denotes the upper-layer Exner function thickness ensemble-mean error or deviation

from the mean, and A is the area covering the earth. The surface Exner function norm is

‖ · ‖∆π1+2
=

1
A

[∫
S

(
∆π′

1 + ∆π′
2

)2
dS

]0.5

(11)

where ∆π′
1 is the lower-layer Exner function thickness ensemble-mean error or perturbation.
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Model error was a very prominent component of the errors in these experiments, arguably

more than they are in operational ensemble forecasting (e.g., Simmons and Hollingsworth 2002,

their Fig. 6). Figure 7 examines the growth of ensemble forecast spread compared to the ensem-

ble mean error, taken from Experiment 4, described below. Compared with the figure from Sim-

mons and Hollingsworth, it is apparent that the growth of spread lags far behind the ensemble

mean error, significantly more than it does in a recent version of ECMWF’s model.

b. Experiments

What now follows are a description of each data assimilation experiment, summarized in

Table 1.

Experiment 1, “T127 perfect model,” performed the ensemble data assimilations using the

EnSRF in a perfect-model context, assimilating the T127 observations using an ensemble of

forecasts at T127 with r = 1.01 (some covariance inflation has been found to be helpful in

perfect-model simulations; see Hamill et al. 2001, Whitaker and Hamill 2002). To be consis-

tent with the rest of the data assimilation experiments conducted at T31 resolution, the error and

spread statistics were evaluated only for scales T31 and larger.

Experiment 2, “covariance inflation,” used an EnSRF algorithm with model error parame-

terized with a straightforward covariance inflation. Various values of covariance inflation were

tried, but all simulations had the tendency over many weeks to become numerically unstable.

For subsequent discussion, assume the covariance inflation is r = 1.08, i.e., perturbations were

inflated by 8 % at the beginning of each assimilation cycle.

Experiment 3, “restarted covariance inflation,” was a modification of experiment 2. Since

covariance inflation algorithms typically outperformed 3D-Var experiments (described later)

for a short period of time, we considered an experiment where the EnSRF was re-run in over-

lapping 20-day windows. The first 10 days in each window were discarded as a spinup period,

and statistics accumulated for the remaining 10 days. Thus, the overall 100 days where statistics

were accumulated represented 10 overlapping data assimilation experiments. In this experiment,

r = 1.10.
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Experiment 4, “T127 additive error,”, used additive errors and no covariance inflation. In

this case, additive errors for each member were randomly drawn from a time series of the true

additive errors, found by comparing the T127 and T31 simulations. This simulation was used as

a basis for comparing how skillful other additive error parameterizations were.

Experiment 5, “T63 additive,” used only additive errors randomly drawn from differences

between T63 and T31 simulations. The scaling factor s for inflating additive model error sam-

ples was set to 1.20, chosen by experimentation.

Experiment 6, “T63 analogs,” set s = 1.20 as in experiment 5, but in this experiment non-

random times were selected from the time series of differences between T63 and T31 simula-

tions. At each data assimilation time, we searched a 10,000 day time series of initial conditions

and found the 208 times in that time series that were the closest fit to the observations at this

time. The analogs were a somewhat better fit to the observations, typically around 20-40% closer

fit than the random model states. Since model error appeared to be highly state dependent (Fig.

3), the hypothesis was that selecting additive model error samples from relatively similar states

would provide a better parameterization than from random states.

Experiment 7, “24-h tendency:” additive errors were randomly drawn from a sample of dif-

ferences between model states separated by 24 h. These additive errors were scaled by 0.25.

Experiment 8, “climatology:” additive errors were randomly drawn from a sample of anoma-

lies from the model’s climatological mean state, scaled by 0.25.

Experiment 9, “3D-Var,” was an experiment simulating a 3-dimensional variational analysis

by updating a single model state using a static background-error covariance estimate. The static

background-error covariances were formed from an ensemble consisting of 208 random samples

of actual background error from experiment 5 inflated by 40 %. The same 5000 km localization

of covariances was used. A similar approach to simulating 3D-Var in an ensemble filter frame-

work was described in Zhang and Anderson (2003) and Evensen (2003).

5. RESULTS
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Table 2 summarizes the time-averaged ensemble-mean error and spread of the analyses. For

reference, the errors of climatology were approximately 28 ms−1 in the kinetic-energy norm.

The accuracy of the resolved scales from Experiment 1, the T127 Perfect Model, produced the

lowest error in all norms. Experiment 2, a straightforward application of covariance inflation,

became numerically unstable. However, if the ensemble was regularly re-started, as it was in

Experiment 3, then the assimilations produced analyses with ∼ 7, 15, and -18 % relative im-

provements, measured as the fractional difference in error between 3D-Var (Exp. 10) and the

T127 Perfect Model (Exp. 1) using the three norms in eqs. (9)-(11).

The T127 additive error, the T63 additive and T63 analogs experiments all had nearly the

same errors. These produced ∼ 41, 38, and 85 % relative reductions in error for the T63 ad-

ditive experiment. Interestingly, the parameterization using the T63 runs were equally skillful

to using T127 samples of the additive error (Exp. 4), indicating that the use of model differ-

ences from T63 simulations was a highly effective choice of parameterization. The use of closer

analogs of model error (Exp. 6) did not have a noticeable impact on model accuracy.

Why was the covariance inflation experiment substantially less accurate than these additive

error experiments? Consider a snapshot 10 days into the verification from the T63 additive error

experiment (Fig. 8). This plot shows at each grid point the Kalman gain (eq. 3) for correcting

(a) the upper-layer thickness ∆π2 and (b) the lower-layer thickness ∆π2 based upon that same

grid point’s upper-layer thickness ∆π2. This plot indicates that in the tropics, the assimilation of

observations of upper-layer thickness typically resulted in small corrections to the lower-layer

thickness, which is largely anticorrelated with the correction to upper-layer thickness. Hence,

the lower-layer thickness ensemble variance was not substantially decreased during the update in

the tropics. However, during the subsequent forecast, the ensemble spread grew in the extratrop-

ics due to internal error growth and was further inflated in the extratropics by the additive model

error parameterization (e.g., samples such as in Fig. 3). Figure 9(a) shows that the zonally av-

eraged background spread in the T63 additive simulation reaches a quasi-equilibrium state, de-

creased in the update but growing by a similar amount during the forecast.
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If we consider the covariance inflation simulation, we see a runaway growth of spread in the

tropics (Fig. 9b). Covariance inflation caused the spread prior to the update to increase propor-

tionally everywhere. Repeated inflation every analysis cycle eventually produces an ensemble

with unrealistically large spread in the tropics. Since analysis increments are proportional to the

background spread at the observation location, this implies that tropical observations then began

to introduce large adjustments to the background. Increasingly with time, these increments be-

came less realistic. In this particular model, for instance, the unrealistic increments can be seen

by examining surface Exner function, πtop + ∆π1 + ∆π2. For our additive error simulation, the

increments to layer thicknesses ∆π1 and ∆π2 were strongly anticorrelated (Fig. 8), limiting the

size of changes to column thickness and hence surface Exner function. In the covariance in-

flation sumulation, the ensemble lost this anticorrelation, and unrealistically large adjustments

to total column thickness resulted (Fig. 10b). This behavior of the ensemble filter was some-

what different than the classical “filter divergence” problem. Here, the problem was not that the

background-error covariances are systematically underestimated so that the observations are ef-

fectively ignored. Rather, errors increased because the background-error covariance model be-

came corrupted due to the effects of covariance inflation in regions where observations have lit-

tle or no influence. These results show that a uniform, large covariance inflation factor to pa-

rameterize model error is likely to cause data assimilation problems if the observations them-

selves are not uniform in density. This situation can be expected when background errors differ

in magnitude and growth rate from one part of the domain to another; see also the discussion

in Snyder and Zhang (2003, sec. 6b). A location-dependant inflation factor, akin to the "mask"

used in the breeding technique of Toth and Kalnay (1997), could in principle ameliorate some of

these problems, or the approach of Zhang et al. (2004; see eq. 5).

We next consider whether forecast accuracy varied with the specific type of additive model

error parameterization. Parameterizing the model error with 24-h tendencies and climatology did

produce progressively less accurate assimilations. 24-h tendencies produced analyses that were

33, 34, and 50 % improvements in relative errors, while additive errors sampled from climatol-
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ogy produced assimilations that were 10 and 31 % better and 44 % worse in the three norms (re-

call that the T63 additive experiment produced 41, 38, and 85 % reductions). This result indi-

cates that the spatial structure of additive errors were determinative of the accuracy of ensem-

ble data assimilations. Here, the source of model error was model truncation, introducing er-

rors that were relatively small in scale. When the additive errors samples were inappropriately

large in scale, they modified the background ensemble so its perturbations were also too large

in scale. When assimilating a single observation, the analysis increment is proportional to the

background error covariance between a grid point and the observation location. Consequently,

an overly large spatial scale of background-error covariances caused the observations to have un-

duly large influence in adjusting the analysis at distances far from the observation location, and

the skill of the assimilations decreased.

A characteristic seen in nearly all the ensemble simulations in Table 2 is that the spread for

the surface Exner function is much less than the ensemble-mean error, even in the perfect-model

experiment. The surface Exner function is not actually a state variable, but is diagnosed from

the sum of layer thicknesses. We suspect that the larger deficiency in spread is due to larger er-

rors in these diagnosed cross covariances of the state variables, for the spread deficiency was

noted even in the T127 perfect model simulation.

6. DISCUSSION AND CONCLUSIONS

In these experiments, we considered different methods for parameterizing the model error

in ensemble assimilations due to truncation of the model resolution. Of course, model errors in

full numerical weather prediction models can caused by many other factors, such as improper

parameterizations of other sub-gridscale processes such as convection not included in this sim-

plified model. Our choice here was to try to understand one relatively simple source of error and

explore which methods were most effective for treating them. The experimental setup was de-

signed to produce large model errors, probably a larger contribution to forecast error than occurs

in current-generation numerical models.

20



The experiment was conducted with a 2-layer primitive equation model. The true state was

a T127 forecast nature run. Ensemble data assimilations were performed with the same model

at T31 resolution, assimilating imperfect observations drawn from the T127 forecast. Several

methods were considered for parameterizing the model error at the resolved scales (T31 and

larger) due to interaction with the unresolved scales (T32 to T127). “Covariance inflation” sim-

ply inflated the background forecast members’ deviations about the ensemble mean. Another,

“additive errors,” added specially structured noise to each ensemble member.

The method of parameterizing this model error had a substantial effect on the accuracy of

ensemble data assimilations. The best additive model error parameterization was able to reduce

the relative error between 3D-Var and a near-perfect assimilation system by 38 to 85 %, depend-

ing on the norm used to measure the error. Covariance inflation produced ensembles with anal-

ysis errors that were typically slightly less than the analysis errors from 3-dimensional varia-

tional (3D-Var) assimilation, but in order for the method to remain stable, the assimilations had

to be continually restarted. An examination of the characteristics of the covariance inflation run

showed that it developed perturbations that produced an inaccurate model of the background er-

ror covariances.

The most effective additive error parameterization used samples of model error from a time

series of differences between T63 and T31 forecasts. Scaled samples of differences between

model forecast states separated by 24 h were also tried, as well as scaled samples of the model

state’s anomaly from the model climatology. These latter two methods of generating additive

error samples produced analyses that were less accurate than when using differences between

T63 and T31 forecasts but more accurate than covariance inflation. Differences between T63

and T31 forecasts produced an additive error parameterization with a length scale very similar to

the true model error length scale, while the scaled 24-h forecast and deviations from climatology

had progressively longer length scales, indicating that the correlation length scale of the additive

errors is important.
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This method of parameterizing model error does not use innovation statistics from the data

assimilation, as proposed by Dee (1995), Dee and da Silva (1998, 1999) and tested in an en-

semble filter by Mitchell and Houtekamer (2000). Use of innovation statistics has the concrete

benefit in that model errors are estimated using independent information, the observations. The

model error parameters may also be adaptively tuned, increasing the magnitude of model error

when the first guess is not a good fit to the observations. A drawback of the method is that it

may not be possible to estimate a large number of parameters of a model-error covariance model

using this approach, and the method depends on the observing network and an accurate charac-

terization of the observation errors. Indeed, though Mitchell and Houtekamer’s approach was

demonstrated to work well in an observing system simulation experiment context, in practice

they now generate additive errors to be consistent with random draws of 3D-Var covariances

(Houtekamer et al. 2004).

Unlike the innovation statistics method, here the differences between short-term model inte-

grations were used to generate samples of model error. As such, the additive error samples rep-

resented actual realizations of model differences, with structures that had consistent mass/wind

relationships and appropriate spatial structure. In these experiments we knew a priori what the

model error was and thus could design a method of using differences between forecast mod-

els to accurately simulate these model errors. In practice, the actual model deficiencies will not

be very well known. They are likely to be an amalgamation of errors from many sources: er-

rors in convective parameterizations, boundary-layer parameterizations, radiation, cloud micro-

physics, land-surface processes, parameter mis-estimation, model truncation, and so on. How-

ever, our approach is appealing at least for its simplicity; if one has a well-founded reason for

believing that a particular parameterization is problematic, two models with different parameter-

izations could be run and the resulting differences used as samples of additive errors. Further, if

additive errors come from many sources, there is no conceptual reason why multiple, indepen-

dent additive errors could not be added to each ensemble member, one for each suspected type

of model error. Perhaps innovation statistics approach could be could be incorporated as well,
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adaptively changing the amount of model error added depending on the misfit of the first guess

to the observations. Clearly, methods for parameterizing model error are important and deserv-

ing of much more exploration.
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FIGURE CAPTIONS

Figure 1. Zonal mean statistics for nature runs at T127, T63, and T31 resolutions. (a) Upper-

layer zonal wind, (b) lower-layer zonal wind, and (c) Upper-layer ∆π.

Figure 2. Kinetic energy spectrum of nature runs at T127, T63, and T31 resolutions. Curves for

T63 and T31 are shifted by one and two orders of magnitude, respectively.

Figure 3. Time series of upper layer thickness 24-h model errors. True state of upper layer ∆π

resolved scales overplotted in solid lines (contour interval 50 J kg−1 K−1). Geographical

features are overlaid only for perspective.

Figure 4. Kinetic energy spectrum of model errors due to lack of interactions with unresolved

scales, accumulated at 3, 24, 48, 72, 96, and 120 h. (a) Spectrum of model errors when model

is truncated at T31, and (b) spectrum when truncated at T63.

Figure 5. Spatially lagged correlation along 45o N latitude of ∆π as a function of zonal distance

for various additive error models, as well as the correlation of the background forecast en-

semble.

Figure 6. Observation locations. Observations were generated globally on a spherical geodesic

grid. There are 362 observation locations worldwide.

Figure 7. Growth of ensemble spread and ensemble-mean error in the kinetic-energy norm, taken

from the perfect additive error experiment (#4).

Figure 8. Upper-layer ensemble mean background ∆π2 and the Kalman gain for (a) the upper

layer ∆π2 and (b) the adjacent lower layer ∆π1 at time t=10 days from the T63 additive ex-

periment.

Figure 9. Hovmoller diagrams of zonally averaged background spread of ∆π1 from the (a) T63

additive experiment, and (b) covariance inflation experiment.
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Figure 10. Hovmoller diagrams of zonally averaged Kalman gain K of changes of surface Exner

function ∆π1 + ∆π2 from the (a) T63 additive experiment, and (b) covariance inflation exper-

iment.
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Table 1. Table of data assimilation experiments performed. The first column denotes the experi-

ment number, the second column the name of the experiment. The third column denotes the

general data assimilation methodology. The fourth column indicates the amount of covari-

ance inflation, r. The fifth column indicates the amount rescaling of additive error, s. The

sixth column indicates the additive error type. The seventh column indicates whether addi-

tive errors in EnSRF assimilations were subjected to a bias correction.

Exp # Name Method r s Additive Error Type Bias Correction?

1 T127 perfect model EnSRF 1.01 n/a n/a n/a

2 Covariance inflation EnSRF 1.08 n/a n/a n/a

3 Restarted cov inflation EnSRF 1.10 n/a n/a n/a

4 T127 additive error EnSRF n/a 1.00 T127 Yes

5 T63 additive EnSRF n/a 1.20 T63 Yes

6 T63 analogs EnSRF n/a 1.20 T63 global analogs Yes

7 24-h tendency EnSRF n/a 0.25 24 h tendency No

8 Climatology EnSRF n/a 0.25 Climatology No

9 3D-Var 3D-Var n/a 1.40 n/a n/a
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Table 2. Global ensemble-mean analysis error and ensemble spread, measured in kinetic energy

norm, upper-layer Exner-function thickness norm, and surface Exner function norm.

Exp # Name Errke Sprke Err∆π2
Spr∆π2

Err∆π1+2
Spr∆π1+2

1 T127 perfect model 3.67 3.96 5.37 5.51 1.17 0.97

2 Covariance inflation – – (diverged) – – –

3 Restarted cov inflation 5.62 5.47 7.74 5.04 1.83 2.31

4 T127 additive error 4.92 4.85 7.10 6.81 1.25 0.86

5 T63 additive 4.93 4.81 7.14 6.62 1.28 0.82

6 T63 analogs 4.96 4.76 7.10 6.52 1.27 0.82

7 24-h tendency 5.08 4.18 7.21 5.53 1.45 1.14

8 Climatology 5.56 5.36 7.30 5.89 1.98 1.93

9 3D-Var 5.76 n/a 8.16 n/a 1.73 n/a
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Figure 1. Zonal mean statistics for nature runs at T127, T63, and T31 resolutions. (a) Upper-

layer zonal wind, (b) lower-layer zonal wind, and (c) Upper-layer ∆π.
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Figure 2. Kinetic energy spectrum of nature runs at T127, T63, and T31 resolutions. Curves for

T63 and T31 are shifted by one and two orders of magnitude, respectively.
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Figure 3. Time series of upper layer thickness 24-h model errors. True state of upper layer ∆π

resolved scales overplotted in solid lines (contour interval 50 J kg−1 K−1). Geographical

features are overlaid only for perspective.
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Figure 4. Kinetic energy spectrum of model errors due to lack of interactions with unresolved

scales, accumulated at 3, 24, 48, 72, 96, and 120 h. (a) Spectrum of model errors when model

is truncated at T31, and (b) spectrum when truncated at T63.
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Figure 5. Spatially lagged correlation along 45o N latitude of ∆π as a function of zonal distance

for various additive error models, as well as the correlation of the background forecast en-

semble.
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Figure 6. Observation locations. Observations were generated globally on a spherical geodesic

grid. There are 362 observation locations worldwide.
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Figure 7. Growth of ensemble spread and ensemble-mean error in the kinetic-energy norm, taken

from the perfect additive error experiment (#4).
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Figure 8. Upper-layer ensemble mean background ∆π2 and the Kalman gain for (a) the upper

layer ∆π2 and (b) the adjacent lower layer ∆π1 at time t=10 days from the T63 additive ex-

periment.
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Figure 9. Hovmoller diagrams of zonally averaged background spread of ∆π1 from the (a) T63

additive experiment, and (b) covariance inflation experiment.
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Figure 10. Hovmoller diagrams of zonally averaged Kalman gain K of changes of surface Exner

function ∆π1 + ∆π2 from the (a) T63 additive experiment, and (b) covariance inflation exper-

iment.
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